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ABSTRACT 

Recently, S. Shelah proved that an inaccessible cardinal is necessary to build a 
model of set theory in which every set of reals is Lebesgue measurable. We give 
a simpler and metamathematically free proof of Shelah's resulc. As a corollary, 
we get an elementary proof of the following result (without choice axiom): 
assume there exists an uncountable well ordered set of reals, then there exists a 
non-measurable set of reals. We also get results about Baire property, K~- 
regularity and Ramsey property. 

w Introduction 

Recently, S. Shelah ([5]) has given an unexpected answer to Solovay's 

question ([7]): is the theory Z F +  DC+"every  set of reals is measurable" 
equiconsistent with ZF?+ Actually, Shelah proved the following result, by means 

of combinatorial ideas and elaborated metamathematical methods: 

THEOREM I (S. Shelah). Assume  ZF + DC + "every Y.' set of  reals is measur- 

able". Then t~, is an inaccessible cardinal in the eonstructible universe L. 

So the theory Z F +  DC+"every  Z~ set of reals is measurable" is already 

strictly stronger than ZF. 
By using S. Shelah's combinatorials ideas, but by working on 2 ~ instead of N,, 

we get a simpler and metamathematically free proof of S. Shelah's theorem. 

Furthermore we obtain new results about other properties of sets of reals, 

namely the Baire property, the K,,-regularity and the Ramsey property. Let us 

recall the following definitions: 

' Throughout the paper "measurable" means '+Lebesgue measurable". 
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DEFINITION 1. (i) Recall that a subset of w '~ is K~ if it is the union of a 

countable sequence of compact subsets of to ~. A subset X of to ~ is K,-regular  if: 

either X is contained in a K~ set, or X contains a closed set which is not K,. 

(ii) If x is a countable set, let [x ]~ be the set of infinite subsets of x. A subset X 

of [to]~ is Ramsey if there exists an element x of [to]~ such that [x] '~ C_X or 

[x] c [to]  \x .  

In Solovay's model every set of reals is measurable and has the Baire property,  

and also every set of reals is K~-regular (A. Louveau [1]) and is Ramsey (A.R.D. 

Mathias [3]). 

(By "set of reals" we mean respectively subset of 2 ~, subset of to ~, or subset of 

[to] w , depending on the property we consider.) 

Now let us state our result which is a generalization of Shelah's theorem: 

THEOREM 2. Assume ZF + DC + "every ~ set of reals is measurable" and 

either 

(i) every lf,~3 set of reals is measurable, or 

(ii) every ~3 set of reals has the Baire property, or 

(iii) every If,~3 set of reals is K~-regular, or 

(iv) every 1f,~3 set of reals is Ramsey. 

Then 1~1 is an inaccessible cardinal in the constructible universe L. 

REMARK. The hypothesis "every ~;~ set is measurable" cannot be replaced by 

"every 5;~ set is measurable" or by "every 1s has the Baire proper ty"  or by 

"every ~ is K~-regular" because of the following unpublished result of S. 

Shelah and J. Stern ([8]): 

THEOREM 3 (S. Shelah and J. Stern). Assume ZF is consistent. Then the 

following theory is consistent: ZF + DC + N1 ~ = NI + "every ordinal definable set of 

reals is measurable" + "every set of reals has the Baire property" + "every set of 

reals is K~-regular". 

The problem to replace in Theorem 2 "every I~ is measurable" by "every 1s 

set is Ramsey" is still open. 

As a corollary of the lightface version of Theorem 2, we get: 

THEOREM 4. Assume ZF + DC + MA + 2 "o > 1~1 + N L = 1~1. Then there exists : 

(i) a non-measurable ~ set of reals, 

(ii) a ~3 set of reals without the Baire property, 

(iii) a non-K~-regular ~3 set of reals, 

(iv) a non-Ramsey ~ set of reals. 
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REMARK. Parts (i) and (ii) are unpublished results of Galvin, Roirman, 

Shelah, Solovay, Woodin. 

We get also the following: 

THEOREM 5. Assume ZF + DC + "there is an uncountable well ordered set of 

reals". Then there is a non-measurable set of reals. 

REMARK. S. Shelah has announced this last result suggesting a proof using a 

combination of his proof of Theorem 1 and J. H. Silver's proof of a theorem 

about coanalytic equivalence relations ([6]). We have a quite elementary proof. 

We would like to close this introduction by thanking Jacques Stern, Ramez 

Sami and Alain Louveau for their remarks. 

w Rapid filters 

For proving Theorems 2, 4 and 5 we have to build sets of reals not having the 

property of measurability, the Baire property, the K,~-regularity and the Ramsey 

property. 

The classical constructions use the axiom of choice or at least the existence of 

a non-trivial ultrafilter on to. Let us recall the following facts: 

THEOREM 6. Let 91 be a non-trivial ultrafilter on to. Then 

(i) 91 viewed as a subset of 2 ~ is not measurable ; 

(ii) 91 viewed as a subset of 2 ~ doesn't have Baire property ; 

(iii) 91 viewed as a subset of to w (indentifying infinite subsets o f  to with their 

increasing enumeration) is not K~-regular (A. Louveau [1]); 

(iv) let f : [ to]~ ~ [to]~ be the following continuous function: if x E [to]~ let 

(xn),E~ be its increasing enumeration and let f (x)  = U,Eo,[x2,,x2.+~[. Then 

f-~(91) is not Ramsey (A.R.D. Mathias [2]). 

Of course we can't use these results. But it turns out that it is possible to 

replace the ultrafilter by a "rapid filter" which will play the same role. This 

notion is due to G. Mokobodzki [4]: 

DEFINITION 2. A non-trivial filter o % on to is rapid if for every q~ : to-~  to 

there is a set F E f f  such that for every k E to: 

F n , p ( k ) < - k .  

(We identify an integer with the set of its predecessors.) 
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THEOREM 7. Let all be a rapid filter on to. Then assertions (i), (ii), (iii), (iv) of 

Theorem 6 are true. 

Parts (i), (ii), (iii) are due to M. Talagrand ([9]). Part (iv) is due to A.R.D.  

Mathias ([2]). 

Classically, constructions of rapid filters were done using A C + C H  (or 

Martin's axiom). We show another way to construct a rapid filter. This 

construction is inspired by the combinatorials ideas of S. Shelah. 

From now on, X is a well ordered subset of 2 ~ of type 1,11, with ordering < x. 

DEFINITION. (i) For a,/3 E 2L a ~/3 we let: 

h(ot,/3) = Inf{n E to ; a  (n) # /3  (n)}. 

(ii) Let R be some equivalence relation on 2 '~ We associate to R a set ZR C to 

by: 
ZR = {h(c~,/3); a EX, /3  E X , a ~ / 3 ,  R(c~,/3)}. 

(iii) We define ~x the filter generated by the sets ZR, for R a Borel 

equivalence relation on 2 ~ with countably many classes. 

PROPOSITION 1. o~x is a non-trivial .filter on to, and if A E ~x  and n E to then 

A n { k  ~ t o ;  k > n}~,~•  

PROOF. At first let us remark that for any Rl, R2, ZR, n ZR2 D ZR,~R2. Let us 

show that each ZR is infinite: as X has cardinality I~, and R countably many 

classes, one of the R-classes on X, say Y, is infinite. The function h maps [Y]2 

(the set of pairs of elements of Y) into ZR. So, by Ramsey's  theorem, if ZR is 

finite then there is an infinite homogeneous set. But by definition of h, any 

homogeneous set is of cardinality at most 2. 

Let A @ ~ x  and n E t o .  Let R be such that A D Z R .  Then A n { k E t o ;  
k >= n}DZR,  where R '  is defined by: 

R'(x, y ) ~  R(x,  y ) ^ x  r n = y f n. 

DEFINITION 3. For H a subset of 2 ~ • 2 ~ we let: 

H ( X )  = U Ha, 
c ~ X  

where Ha, the section of H at a, is defined by: 

H~ ={/3 ~ 2 ~ ; ( a , / 3 ) E  H}. 

Now comes the key proposition. 
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PROPOSITION 2. Assume the following hypothesis: 

(N) For every G6 subset of 2 ~ x 2 ~ with null sections H, H ( X )  is null.' 

Then ~• is a rapid filter. 

PROOF. Choose recursively a family (A(s, l , j))~2,-.~,.j~ of basic open sets 

in 2'% independent in the sense of measure,  with m(A(s,  l , j))  = 2 -"+" (m denotes 

the Lebesgue measure). To each increasing function ~ : ~o ~ ca, we associate a 

set H "~ C2 ~ x 2  ~ by: 

(a, f l )E  H ~ ~+Vj 3j'_>--_j 31 >=j' fl E A ( a  [ ~(l),l,j '). 

H ~ is a G~ set with null sections, so by (N), H~(X) is null. We now use the 

following lemma: 

LEMMA 2. Let E be a null subset of 2 ~. There is a closed subset B of T" such 

that B A E = O ,  m(B)>O and for every s E 2  < 0̀ , if B A N , # Q  then 

m(B N N , ) =  > 1/8 t'l§ (where Is I is the length of the sequence s). 

PROOF. Let BoC2 ~ be a closed set such that B o N E  = 0  and m(Bo)>-_~. 

Assume Bk is defined and let: 

Bk+, = U {B~ N N, ; s E 2 ~'1, re(N, n B,) >= 1/8'+'}. 

Finally let: 

B = N B k .  
k ~0 

Let us check that B is suitable. For each k E ca and s ~ 2<% Is I = k, one has: 

Hence one has: 

and thus: 

m(N, n (Bk - Bk+,)) <= 2 k ~' I s l l S k + ' .  

1s 
m(B)>--~ - 4k+l  

r e ( B ) > 0 .  

For s C 2  <~, ! s [ > O  and N, A B ~ O ,  one has N, A B ! ~ ! ~  
m(N~ n BI,I.~)=> 1/8 I'l and N, n B t , l =  N, N B I , j  I. Hence one has: 

m(N, AB)>-m(N~ n B i , i ) -  ~] m(N~ n ( B k -  Bk.,)) 
k~-b l  

2k+l-I~t >--s4-2 
k~lsl 

' " N u l l "  means of measure zero. 

and SO 
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and thus: 

M(N, n B ) >  1/8 '~p'' 

Now associate with H'~(X) a closed set B ~ as in the lemma. The sets 

~i = (Ur~i U~,.r A (a~ I~ ( / ) , / , j ' ) )  n B ~ are open in B ~ and n i ffi = 0 ;  so by 

Baire's theorem there is at least some s ~ 2 <" and j ~ ~o such that: 

(1) B ' ~ O N ~ O  but B ~ n N ,  n 0 j = O .  

We now define an equivalence relation R ~. Let  ( ) be a recursive one-to-one 

map from to x 2 <~ into co such that, for every s, (s) => ] s I. To a E 2 ~ associate: 

F ( a )  = the least pair (jo, So) such that (1) holds if there is any, 

F ( a )  = ~ otherwise. 

Then let, for a, /3 ~ 2": 

R ~ (a,/3) "~, ( F ( a )  = ~ and F(/3) = ~) or 

(F(a)#  oo and F(ot) = F(/3) and a I q~(F(a)) =/3 I q~(F(/3))). 

It is easy to check that R ~ is Borel (actually it is ~o) and has countably many 

classes. 

Let Z ,  be the corresponding set in .~x. We claim that for every k ~ to: 

n <= k2(3k + 3)224k. 

For this we have to compute 

z ,  n ~(k )  = {h(~,/3) < q~(k); a,/3 E X , a / / 3 ,  R*(a,/3)}. 

If at,/3 E X and R "(a, /3)  we know that there is some j E to, s ~ 2 <~, such that 

F ( a )  = (j, s), F(/3) = (j, s) and a I q~((j, s)) =/3 r q~((j, s)). 

So we have, by definition of h, h(a,/3)>= ~p((j,s)), but q~ is increasing, so if 

h(a , /3)  < q~(k) then (j, s ) <  k. We know by definition of F and because j is less 

than k, that B * n N , / O  and B '~ n N, n A ( a  rq~(k),k,j) = 0  and similarly for 

/3. Let: 

A(s, j )  = It E 2*'k'; B n Ns n A (t, k, j )  = O}, 

8(s, j) = a(s, j). 

The above remarks show that 

z ,  n y. 
(s,j)<k 

8(s, jy .  
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So we have to bound S(s,j) (when B y n N , ~  ~) .  But by definition of A(s,j) one 

has: 

B ' O N ,  C n (2~\A(t ,k , j ) )  
t~Ats,i) 

which, by using the independence property, gives: 

m (B ~ n N5 ) _--< (1 - 2 'k'j~)8<''j>. 

But we have B ~ A N ~ O  and thus m(B ~ AN~)=>I/8 J~l*], which, by using 

logarithms, gives: 

8(s,j)<=(3ls !+3)2 k'j 

and thus: 

Z~ n ~0(k)_--- ~" ((3Is 1+3)2k*') 2 
(s,j)<k 

and by using that if (j, s)  < k, then I s I < k : 

Z.  N ~o(k )N k(3k +3)2T k. 

Now it is quite easy to prove that ,,~x is rapid. For k Eto let ~ , (k)= 

k(3k +3)224k. Given any ~ : to --> to, which we may assume increasing, define 9 '  

by: 

q~'(k) = ~ ( 6 ( k  + 1)) 

and associate Z~,. For every k E to we have: 

z , . n  ~(@(k + 1) )_  <- @(k) 

and it follows that, if p _-> ~b(0): 

Z~. O r 

But by Proposition 1 one can find A ~ ~• A CZ~, such that A n ~0(~b(0))= ~ ,  

and so for every p E to : 

COROLLARY (DC(I~,)). 

a rapid Jilter. 

PROOF. 

A n ~(p)=<p. 

Assume every union of 1,1~ null sets is null. Then there is 

Pick some X C2" of cardinality N~. By Proposition 2, ,~x is rapid. 
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w Proof of Theorems 2, 4 and 5 

PROOF OF THEOREM 5. Let X be an uncountable well ordered subset of 2 '~ 

We may assume that X is of type ~tl. Let <x  be its order. If H is a G8 subset of 

2 ~ • 2 ~ with null sections, and a E H(X),  let A(c~) be the least y E X (for <x )  

for which cz E H r Then define: 

n ( x )  = {(,~, t~) ~ H(X)  •  A (~) <x A (~)}. 

If some /4 (X)  is not measurable then the conclusion of Theorem 5 does hold. If 

all /-t(X), for H a G, with null sections, are measurable, then (by Fubini's 

theorem) all H(X)  are null so that (N) holds. But then, by Proposition 2, ,~x is a 

rapid filter, hence is not measurable (Theorem 7). In any case there is a 

non-measurable set. 

PROOF OF THEOREM 2. We want to show that any of the assumptions implies 

that, for all a E to w, N~ (~j < ~tt. Suppose not, so that Nj = N~ -[~,,l for some a,, ~ w ~. 

Let X = 2 ~ (1 L [cto]. X then admits a good X~ well ordering (that means, the set 

{(x, y); y E X and x codes the set of predecessors of y} is X~), and it is not hard 

to see that the se t s /4(X)  for H a G8 are X~ hence measurable by hypothesis. As 

above, it follows that (N) holds. But then, by Proposition 2, the corresponding 

o~x is a rapid filter. 

Moreover, one checks that ~x is X~ (ao), so that Theorem 7 gives the desired 

contradiction. 

The preceding proof also gives Theorem 4 by noting that MA+2", ,>N~ 

implies that all X~ sets are measurable. It also gives that results hold at higher 

levels of projective hierarchy. For example, if 2s sets are measurable (n => 2) and 

there is a set X with a El, good well ordering of type ~t~, then the corresponding 
~x is a ~,+~ rapid filter. 
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